Compliance Checks against Ofcom / ICNIRP EMF limits

for Microwaves

Peter Zollman G4DSE Ian White GM3SEK

Click through the slides – but for the complete presentation, watch the video.

f theRSGB

The licence requirement

In short:

"Ensure that your transmissions do not breach the ICNIRP limits for EMF exposures of the General Public."

See *RadCom* and <u>www.rsgb.org/emf</u> for background.

We now have to make assessments to ensure this.

To meet this requirement:

- Define an EMF Exclusion Zone.

This is the zone within which the exposure limits **could** be exceeded.

- Control the Exclusion Zone:
 - If someone is actually present in the EZ, then don't transmit.
 - If someone enters the EZ, stop transmitting (it's OK if you do this promptly).

To meet this requirement:

- Define an EMF Exclusion Zone.
- Control the Exclusion Zone.
- Record your assessment.

For compliance:

- You need to know the boundaries of the EZ.
- Preferably make the EZ inaccessible.
- Or always know if people are inside the EZ.

Active supervision – a big advantage for Amateur Radio

No action needed for persons outside the EZ.

Another way to comply:

 Low power: your equipment never exceeds 10W EIRP averaged over 6 minutes (and never >100W EIRP peak).

Another way to comply:

- Low power: your equipment never exceeds 10W EIRP averaged over 6 minutes (and never >100W EIRP peak).
- IMPORTANT: <u>always average</u> your actual power.
- 50% TX time is a realistic default, almost always conservative.
- Mode factor if relevant (full-carrier 100%, SSB 20-50%,

All the power levels we will quote here are averaged.

Another way to comply:

- Low power: your equipment never exceeds 10W EIRP averaged over 6 minutes.
- But what if
 - EIRP = {very low power} x {high antenna gain} ?
 - 10W EIRP = 100 mW and 20 dBi
 - 10W EIRP = 10 mW and 30 dBi
 - 10W EIRP = 1 mW and 40 dBi

Tiny RF power... so we looked into that.

Ofcom,

not ICNIRP

Bapic pationi de Microwaves

This Is Not HF!

Shorter wavelengths, smaller antennas make a big practical difference.

- We aren't totally surrounded by the EM field
- Much narrower main beams, easier to avoid or exclude.
- Much sharper boundaries for all parts of the Exclusion Zone "either in or out".

Also "Not HF"

- Microwaves are not entry-level amateur radio.
 We assume some technical understanding and engagement.
- Some microwave EMF advice can be very simple and practical:

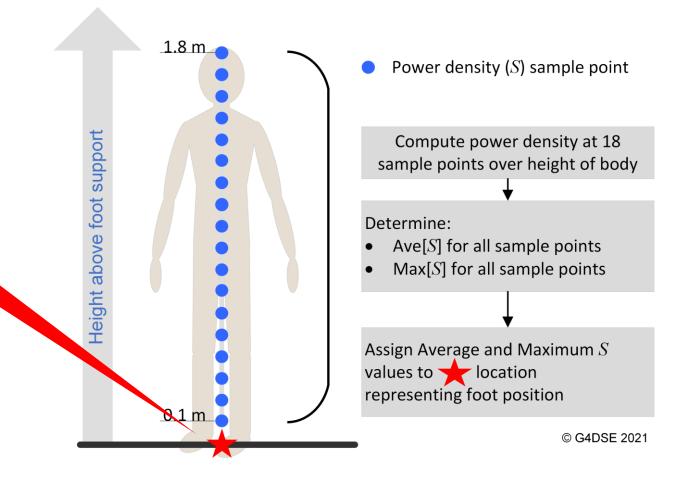
"Don't do anything that you <u>already</u> know you shouldn't be doing."

For example...

Things you <u>already</u> know you shouldn't be doing:

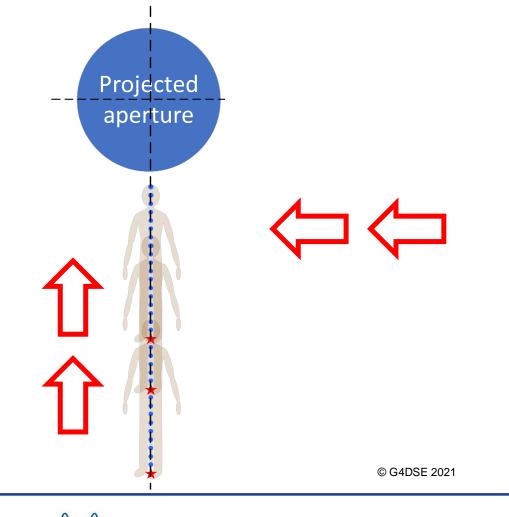
- Don't look into the waveguide = avoid localized high concentrations of EMF
- Don't allow any body part (your own or anyone else's) in areas of high EMF while you transmit.
- Or don't transmit.

Carry on not doing those things.



Estimating Human Exposure

Strong spatial variations of EMF mean that a 'Whole Body Average'
Is Most bor Someobly to be standing tag this poweral different points.





Estimating Human Exposure

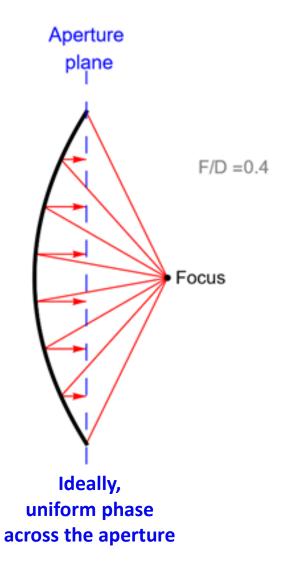
Estimating Human Exposure

- Strong spatial variations of EMF mean that 'Whole Body Average' must be calculated correctly.
- New limits for Local exposure in ICNIRP 2020 (higher than for WBA but could apply to any 2x2cm area).
- Either WBA or Local could be the limiting quantity (depending on location) so **both need to be determined**, everywhere.

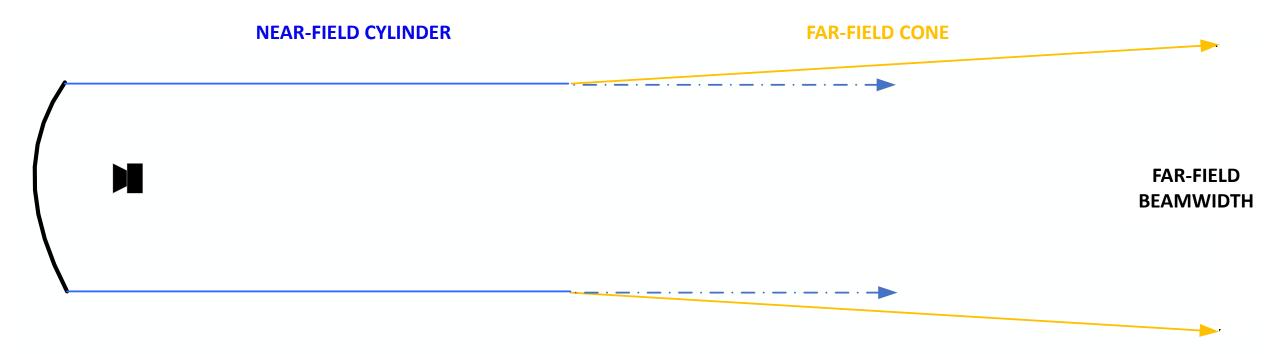
We're handling these details so that you won't need to.

Back to the basic questions

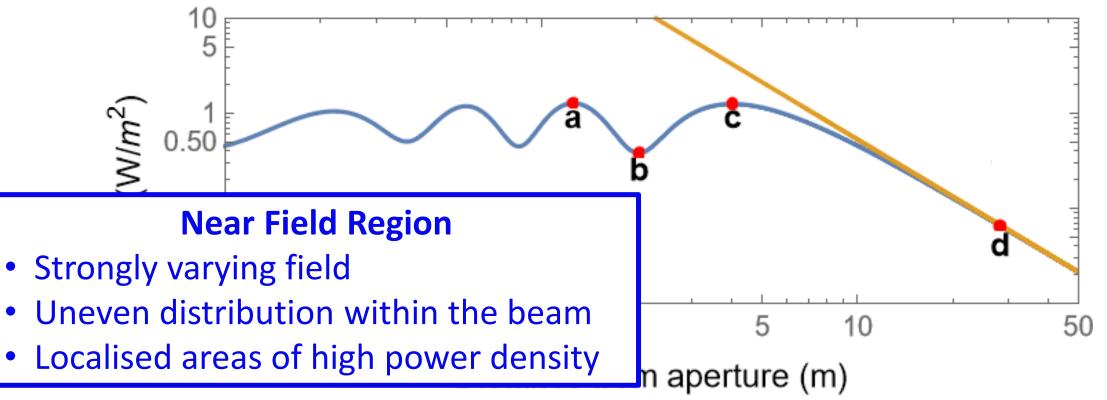
1. Where exactly are the EMF Exclusion Zones?



Parabolic reflector



Build the Exclusion Zone



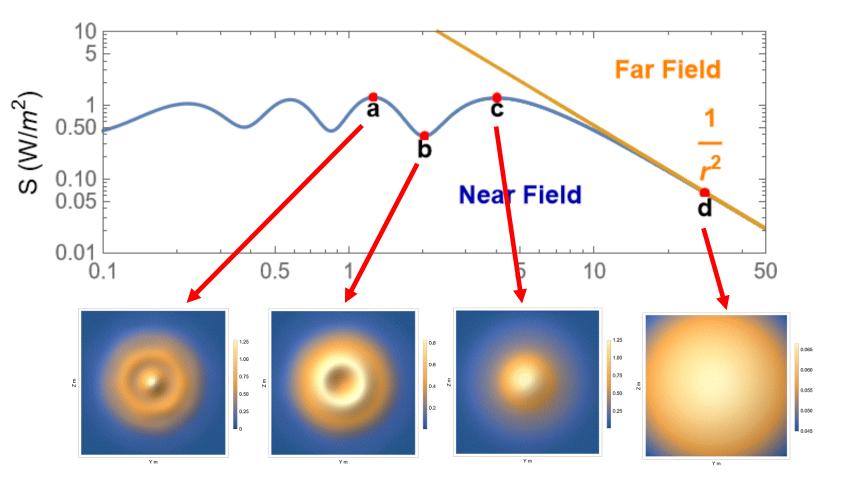
What's happening here?

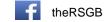
Power density (S) along main beam axis

f theRSGB

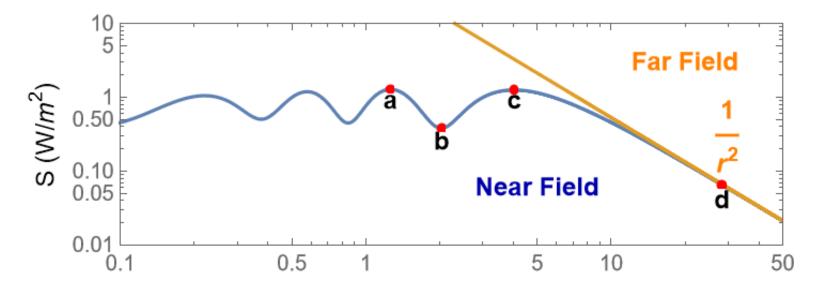
What's happening here?

10 5 S (W/m²) a 0.50 0.10 0.05 d **Far Field Region** 0.01 0.5 0.1 • Power density varies as 1/(distance)² More even distribution across the beam Distand


Power density (S) along main beam axis



Looking directly towards the dish along the main beam axis



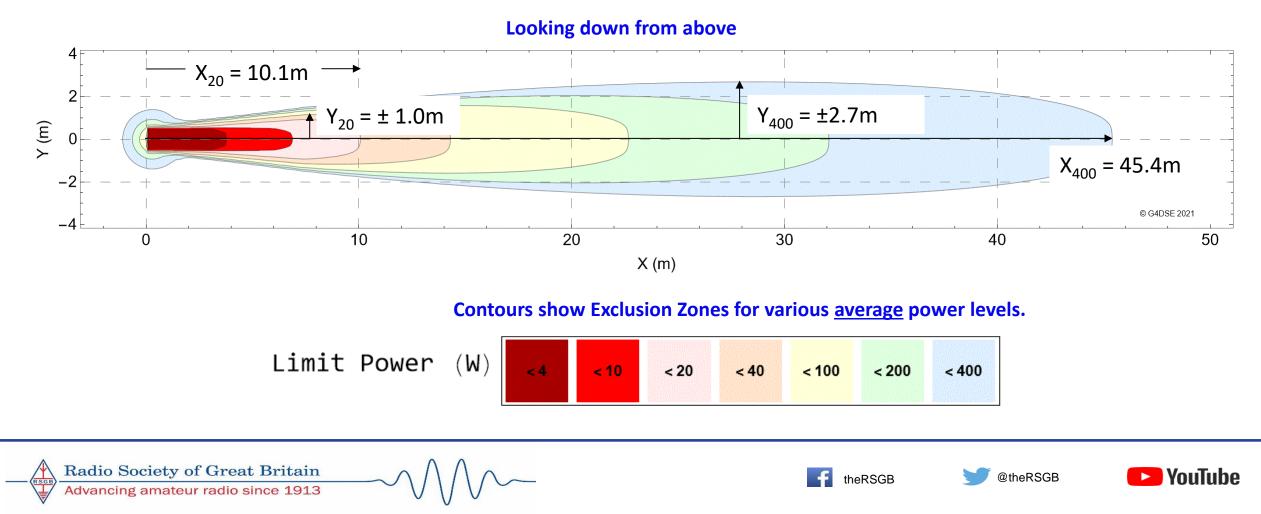
- Too much near-field detail go back to simple formulae.
- A separate formula for each region.

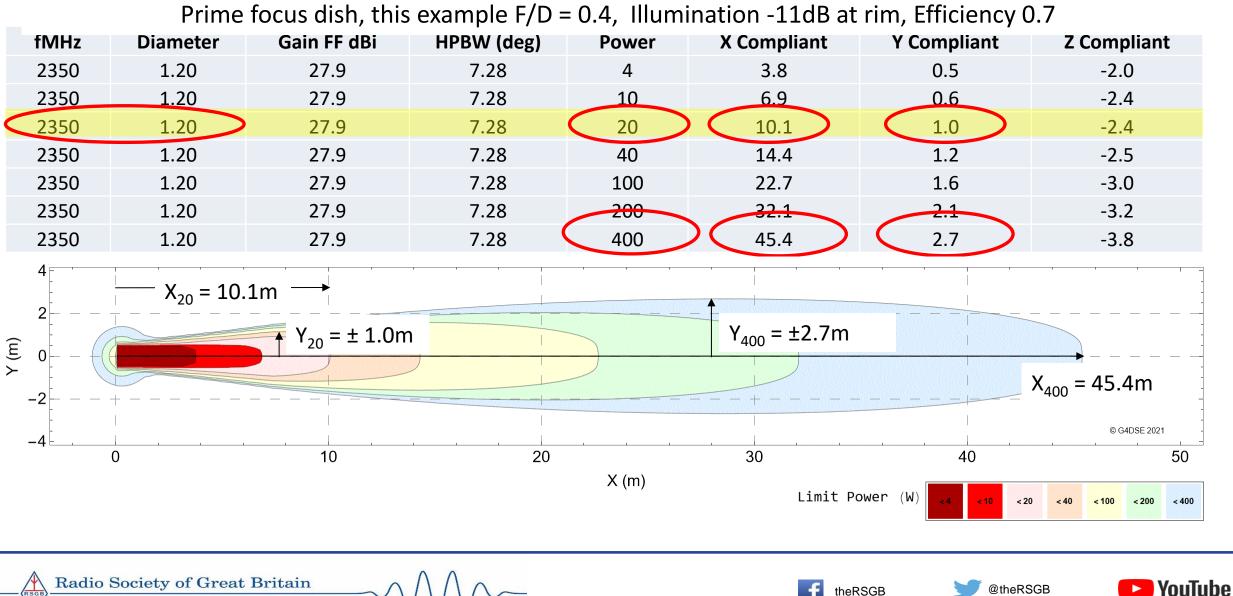
Build the Exclusion Zone

FAR-FIELD CONE

Exclusion Zone very probably extends into Far Field...

- How Far? (X clearance)
- How Wide? (Y clearance)
- How close to ground? (Z clearance)
- Tilt angle for satellite and EME





Create maps of Exclusion Zones vs RF power For example...

Advancing amateur radio since 1913

theRSGB

Prime focus dish, this example F/D = 0.4, Illumination -11dB at rim, Efficiency 0.7										
fMHz	Diameter	Gain FF dBi	HPBW (deg)	Power	X Compliant	Y Compliant	Z Compliant			
2350	1.20	27.9	7.28	4	3.8	0.5	-2.0			
2350	1.20	27.9	7.28	10	6.9	0.6	-2.4			
2350	1.20	27.9	7.28	20	10.1	1.0	-2.4			
2350	1.20	27.9	7.28	40	14.4	1.2	-2.5			
2350	1.20	27.9	7.28	100	22.7	1.6	-3.0			
2350	1.20	27.9	7.28	200	32.1	2.1	-3.2			
2350	1.20	27.9	7.28	400	45.4	2.7	-3.8			

Looking from the side — X₂₀ = 10.1m → 2 Z (m) X₄₀₀ = 45.4m Z₄₀₀ = -3.8m -2 Z₂₀ = -2.4m -4 © G4DSE 2021 10 20 30 40 50 0 X (m) Radio Society of Great Britain YouTube @theRSGB theRSGB Advancing amateur radio since 1913

Ofcom EMF calculator? = F/D = 0.4, Illumination -11dB at rim, Efficiency 0.7 deg) Power X Compliant X Compliant 7 Compliant											
			(deg)	Power	X Compliant	Y Compliant	Z Compliant				
2350	1.20	27.9	7.28	4	3.8	0.5	-2.0				
2350	1.20	27.9	7.28	10	6.9	0.6	-2.4				
2350	1.20	27.9	7.28	20	10.1	1.0	-2.4				
2350	1.20	27.9	7.28	40	Ofcom calc = 15.9m clearance						
2350	1.20	27.9	7.28	100	in EVERY direction!						
2350	1.20	27.9	7.28	200	<u> </u>						
2350	1.20	27.9	7.28	400	45.4	2.7	-3.8				

Low power exemption – good news

What we're looking for

- Power levels below which compliance will be guaranteed
- by proving that it's physically impossible to exceed any ICNIRP Basic Restrictions with the power available.
- Widest achievable range of applicability
 e.g. across most of the microwave spectrum.

Low power exemption – good news

Analyse three inputs:

- ICNIRP

- Fundamentally about temperature rise of body tissue (W/kg)
- Whole-body exposure total power absorbed by the body
- Local exposure power absorbed in a defined small mass or area.
- IEC 62232 guidance on body weight to use for assessments.

– RF Engineering

 Relationships between dish size, efficiency, peak power density in the near field

Low power exemption – good news

Develop a provable rationale

- One example

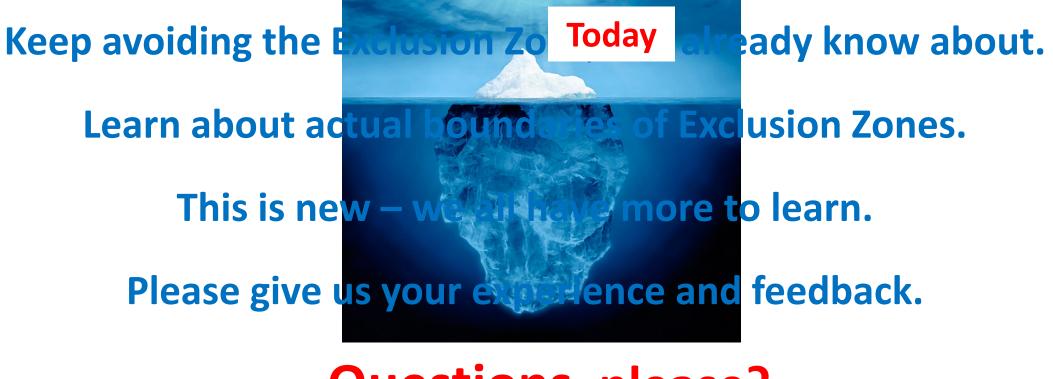
"Average powers up to 1W can be guaranteed compliant

- on any band up to 10GHz
- and provided that energy is distributed over at least 0.5m diameter "

More in PAEC-3 report, including higher bands

The To-Do List

Working with UKuG and BATC...


- Practical values for tables and spreadsheets
- Smaller dishes (< 8λ dia, important for lower bands)
- Offset feeds
- Spillover
- Ground reflection?
- Tilt angles for satellite and EME
- 13cm Yagis (PAEC-2 already contains 23cm)
- Publish PAEC-3 and inform Ofcom.
- Role of measurements? (more practical at microwaves)
- Help with rollout
- Help with feedback.

A very short version...

Questions, please?

