

Searching 437.023 MHz 330 kS

MER 0.0 (0.0 needed) RF Input Level -72 dB Touch Right side to exit Touch Lower left for image capture

DATV receive systems

	000.145.961.000 +	-
B Smalletty () Lawrig () Fine Gan ()		
Territorio State	A Winds and a William	-
Dise Dise Den Den Onen Obe Den Den Osea wen Ora Dra	When we we we	-
The Annual of Annual Annua		

Noel G8GTZ

The approach

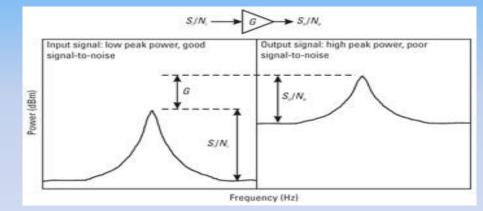
- 📼 ATV is unique as we build our own rx systems
 - No black boxes here!!
- 📼 But we use pre-built components
- 📼 So system design is important
- ଭ We do have the tools to get it right
- 📼 This is a practical guide
 - Just a little theory and maybe not a purist approach
 - But it does work for me ③
 - Does not cover satellite LNB for Q0100 as they just work!

Topics

📼 3 important parameters

- Noise figure
- Gain and dynamic range
- Filtering
- 📼 DATV rx system design
- 🖻 Practical designs
- 📼 Tx Rx sequencer
- 📼 Masthead pre-amp boxes
- 🖻 Microwave transverters

BATC


Rxr Noise figure

- 📼 All electrical circuits make their own noise
 - EG Audio amplifier hiss
 - More dominant above 1 GHz
- This internal noise stops us hearing weak signals
- Good system design keeps the effect of noise to a minimum
- Measured in dB as difference between input noise ratio and output noise ratio

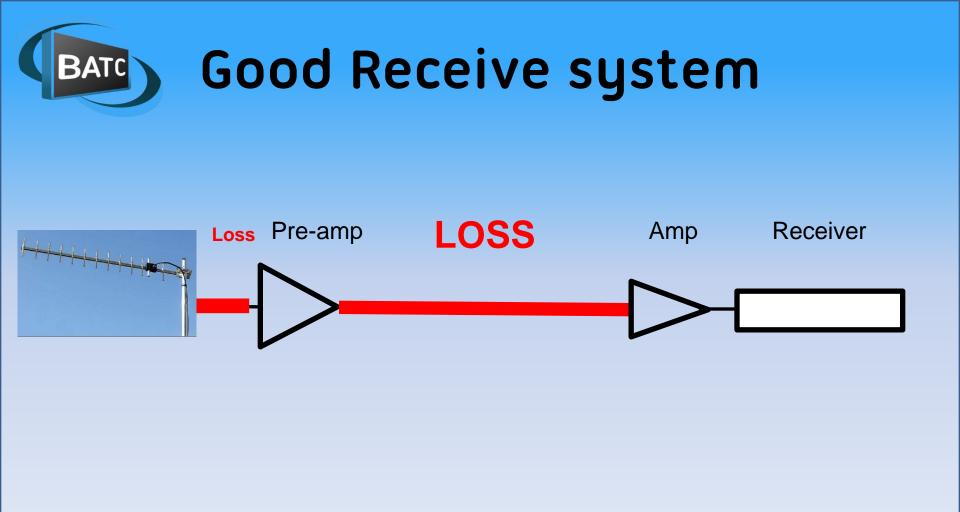
Noise figure

- The signal power is higher at the amplifier's output than that of the signal before entering the amplifier.
- However, because the amplifier adds noise, the noise floor at the output is raised significantly.
- Thus, the signal-to-noise ratio at the output is less than that of the input.

https://www.globalspec.com/reference/63780/20 3279/4-2-noise-figure

Receive system NF

- The first stage in any system is crucial and sets the system noise figure
- You can never recover from a poor noise figure
- ANY loss in front of the first stage will affect your ability to receive weak signals
 - Co-ax
 - Connectors
 - Relays
 - Filters**
 - Water in the co-ax!
- So always try to get your pre-amp at masthead on the higher bands



What is a good NF?

- 💿 That depends!
 - Leave aside EME where every .1dB counts!
- 🝉 Above 1Ghz aim for a 1dB system NF on the bench
- Below 1 GHz general noise becomes the major factor
 - Ground noise & Electrical noise
 - Aim for 1.5dB system NF on the bench
 - Filter before the pre-amp!!
- Measuring NF is difficult / expensive
 - May change with the Portsdown project!
- 💿 So use known components
 - and measure filter / relay / co-ax loss

Rx system Gain

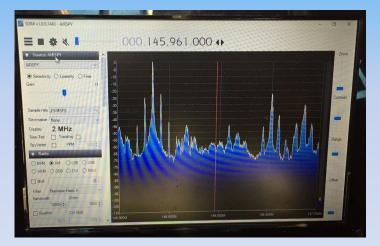
Gain is needed to overcome other losses after the pre-amp

- Filters
- Co-ax
- 🛸 But too much gain can be a problem
 - Dynamic range limitations
 - Not so much in DATV systems

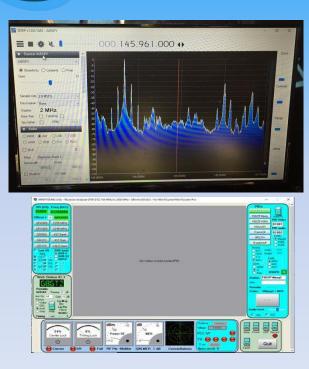
- Solution Need careful system design to avoid overload
- 💿 See GM3SEK paper on the DG8 pre-amp
 - <u>http://www.ifwtech.co.uk/g3sek/vhfdx/dg8-preamp-v7.pdf</u>

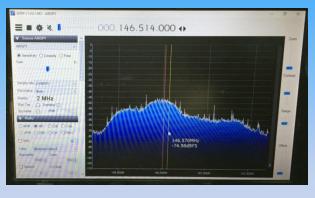
So how much gain?

- Well that depends!
- 📼 Narrow band transceivers don't need much
 - Beware of over loading when building a dual purpose system
- 💿 Knucker needs a little more
 - Terrestrial tuners are designed to be plugged in to an antenna
- 💿 But Minitiouner hardware needs a lot!
 - Satellite tuners are designed to work behind LNB with ~55db gain
 - There is no amplifier on the MiniTiouner PCB
- 💿 Portsdown and Minitiouner s/w can help you


Serit 4473 gain

- At low input levels (below -70 dBm) the 4473 runs at maximum gain
 - Unable to use the full range of the analogue to digital converter. This leads to lower MER or failure to decode.
- Between -70 dBm and -27 dBm provides the optimum decoding performance.
- 🛸 So we need lots of gain in front of a MiniTiouner
- 🛸 See wiki page for detailed explanation
 - <u>https://wiki.batc.org.uk/MiniTiouner_Power_Level_Indication</u>


Rx Filtering


- A system may work on the bench but not on the air ☺
 - We are not alone! There are many "interference" sources
- 🖻 Broadcast / Cell sites
 - Adjacent and near channels
 - Harmonics and multiples
 - Overload from Freeview * 2 on 23cms
 - Always use a filter on 70cms!
- 🖻 Digital is the worst
 - Just white noise....
- 💁 🛚 Bandpass filter will remove most crud on rx
 - Prevent pre-amp overload
 - Maybe a notch to remove specific problems
- Sacrifice system NF for better filtering
 - See the GM3SEK 144MHz DG8 pre-amp design

BATC

Rx Filter = more DX!!



GW8VPG/P received (or not!) on the Isle of Wight 146.5MHz @ 185kms (record for 146MHz at the time)

BATC DATV rx system design

- Masthead low noise pre-amps on all bands above 1GHz
- 💿 Good co-ax with pre-amps in shack below 1GHz
- 📼 Band pass filtering on all bands
- 💿 Optional band switching
- Additional gain to overcome switch and filter losses
- Signal splitter to feed Minitiouner and Knucker NIMs plus band viewer / SDR
- Aim for correct gain level in MiniTiouner and put attenuators in Knucker and SDR feed
- Transmit / Receive sequencing to protect pre-amp

BATC DATV rx system design

Practical thoughts

- Pre-amps
 - Commercial eg DB6NT and G4DDK
 - Use Ebay and Aliexpress with caution
 - Simple MMIC designs are good (G4DDK PCB)
 - PGA103, SPF 4531,
- 💿 Filtering
 - Surplus is fine
 - Chinese is fine
 - But ALWAYS check the loss and if possible the shape (use a mini VNA)
- 💿 Co-ax not too critical after your pre-amp
 - But always measure the loss

Practical thoughts

- 📼 Tx / Rx relays
 - Buy the best you can afford
 - Surplus is fine (often the only option)
 - Check the spec and measure the loss
- After the pre-amp you can use satellite co-ax!
- 🖻 Band switching
 - Better than swapping plugs!
 - BATC / ebay 8 way switch (beware 13cms loss)
 - Multipole Relays
- Use satellite amps and splitters to feed multiple receivers
 - Include Lime Band viewer
 - Put an attenuator before the Knucker!!

		Heln He
-10 d6		2.000
-20 db		Setting
-30 dB		Marker
-40 📾		Mode
-50 dB	and the second second second second second	~ L 0
-60 dB	made main high ada my work of the share have a day work	
-70 db		System
-80 48		Exit to Portsdown
spture Snep	436.50 MHz 437.00 MHz 437.50 MHz Portsdown Band Viewer	Freeze

Practical thoughts

📼 Up and down converters

- Serit 4473 and 4762 frequency range is different
- 4473 does not cover 29/50/70 MHz
 - Use an upconverter to L band (BATC design)
- 4762 does not cover above 1 GHz
 - It does cover transverter IF frequencies so only missing 23cms
- 💿 Connectors
 - Do not use F types unless you have to!
 - BNC are fine, beware crimps
 - SMAs are great for microwave but tend to bind
 - N types are good when you need power handling
 - Beware shiny Chinese adaptors!
 - Don't even think about PL.....!

BATC

Masthead box design

- 📼 GOOD changeover relay
 - Normally on = Tx
- Power pre-amp and relay on receive
 - Use a sequencer
 - Power via co-ax saves a cable
- Leave a vent hole in the bottom
 - Dangle a piece of string out of it!!
- 💿 Co-ax
 - "Great" co-ax between antenna and box
 - "Good" co-ax on transmit
 - "OK" co-ax on receive

Tx / Rx sequencer

Without a sequencer there is a risk the tx will still be on when you power the PA

– Result = smoke from pre-amp 😕

PTT (GND TX) Foot SW	
Ant. Relay	
PA Enable	
Transceiver	

🔍 Plenty of designs available – ask Google

Drive from Portsdown PTT output – before band steering

Microwave rxrs

Most stations use transverters or LNBs for bands above 2.3GHz.

BATC

- Takes care of LNA and band pass filtering
- Most transverters have an IF of 144 or 432 MHz
- Can be treated as just another input as far as rx system design
- Designed for use with NB transceivers so low on rxr gain
 - Needs additional gain but not bandpass filtering although it may help!
- Be careful if using satellite LNB for 10GHz
 - Very high noise level out
 - Switch DC off when not in use if using band switching

BATC

Conclusions

- Low noise amplifier preferably at mast head
 - Cables have BIG losses!
- Enough gain to over come cable and filter losses
- Gain stages to maintain overall gain
- The first stage is the critical stage!
 - Low noise, medium gain and filtering
 - You can never win it back!

- Next steps:
- Read Ian GM3SEK paper and use his spreadsheet!
 - <u>http://www.ifwtech.co.uk/g3sek</u> /vhfdx/dg8-preamp-v7.pdf
 - GM3SEK noise figure realities <u>https://www.youtube.com/watc</u> <u>h?v=G8jECrsgsCY</u>
- 💿 Measure all your co-ax
- Measure all your filters
- And then work the DX!

