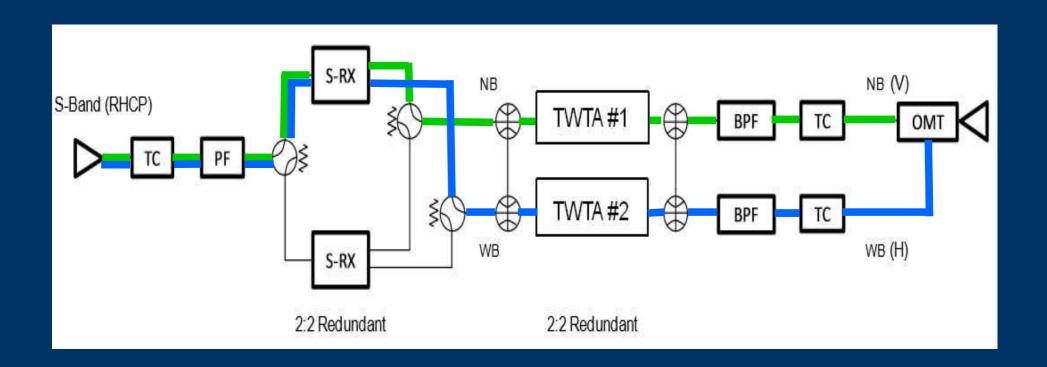


Es'hail-2 (P4-A), the first geostationary OSCAR from Qatar

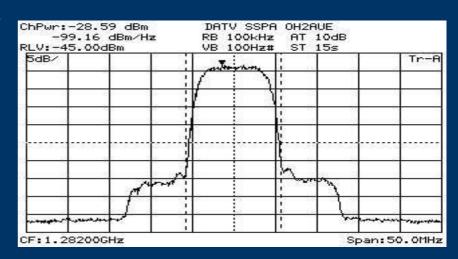
Earth Coverage Es'hail-2



AMSAT Payload Block Diagram

"WB" Transponder (wide band)

Linear Transponder for Digital Amateur Television (DATV) and other highspeed data transmissions.

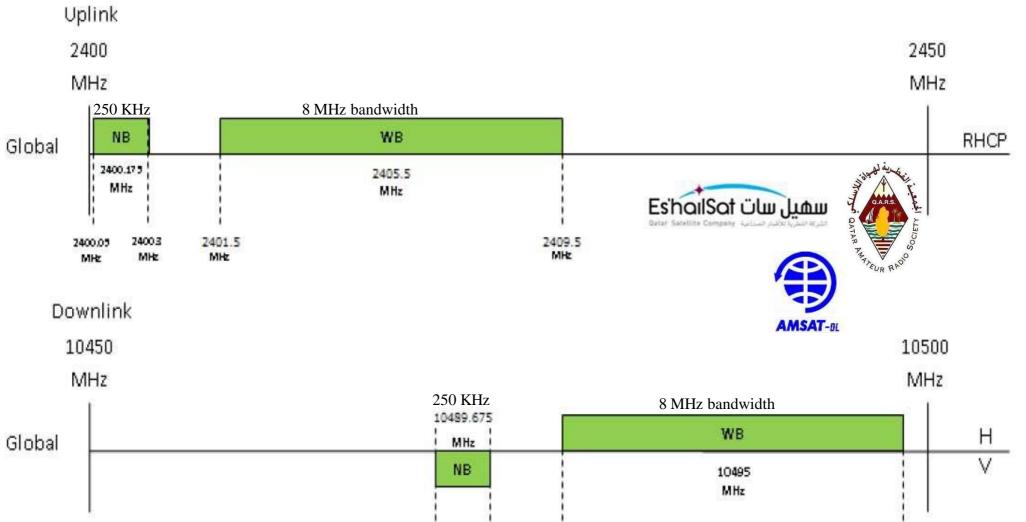

- First DATV transponder in space!!
- with 8 MHz bandwidth one or two DVB-S2 carrier in HD quality will be possible
- in SD or lower quality more channels possible
- Assumes S-Band Uplink peak EIRP of 53 dBW (100W PEP into 2.4m dish)
- X-Band Downlink (SAT-TV dish):

90 cm dishes in rainy areas at EOC like Brazil or Thailand

60 cm around around coverage peak

75 cm dishes at peak -2dB

- Uplink Polarisation on S-Band is RHCP
- Downlink Polarisation on X-Band is Horizontal!
- DVB-S2 "beacon" from Qatar is planned with Live WebCam and promotional videos for Ham radio activities.



10499

MHZ

Xpdr	U/L FREQUENCY (MHz)				D/L FREQUENCY (MHz)				LO	BW
No	Pol	Begin	Center	End	Pol	Begin	Center	End	(MHz)	(MHz)
NB	RHCP	2400.05	2400.175	2400.3	V	10489.55	10489.675	10489.8	8089.5	0.25
WB	RHCP	2401.5	2405.5	2409.5	Н	10491	10495	10499	8089.5	8

10489.55 10489.8

MHz

MHz

10491

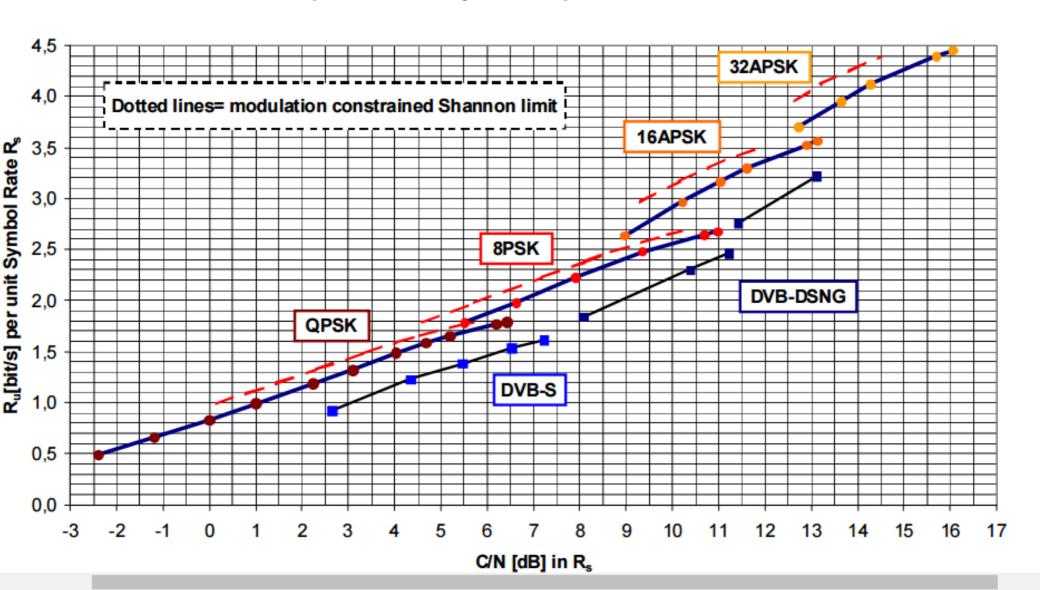
MHz

Partners

SR-Systems

BATC Involvement

- AMSAT-DL requested BATC help to manage and develop WB transponder use
- Hub of experimental DATV experience seems to centre on UK


Es'Hail-2 P4A WB

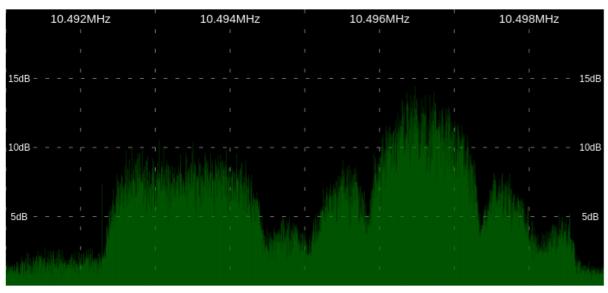
- Es'Hail-2 wideband is an "8 MHz bent pipe" transponder
- There are many potential modes and uses by the amateur TV community
 - Two standards: DVB-S and DVB-S2
 - Four Modulations: QPSK, 8PSK, 16APSK and 32APSK
 - Eleven error corrections (eg 1/2 7/8)
 - Variable Symbol Rate
 - Three video encoders: MPEG-2, H264 and H265
 - 2-way QSOs or broadcasts
- © Occupied bandwidths can be 200 KHz 8 MHz

What Mode?

Spectrum efficiency versus required C/N on AWGN channel

BATC

Choice and Co-ordination

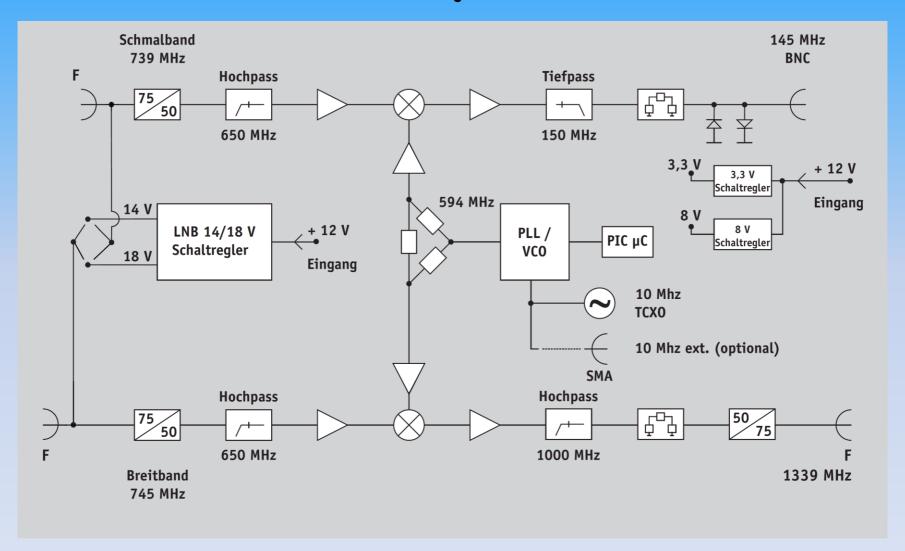

- Easiest mode to start with is "standard" DVB-S QPSK DATV at 2 or 4 Msymbols/Sec 1/2 FEC
- But we should encourage and allow experimentation as well as the standard QSO operation
- DATV receivers need to know basic info about the signal they are receiving
 - Modulation, symbol rate and possibly FEC
- With so many modes and bandwidth combinations possible simultaneously we need co-ordination
- BATC is working with AMSAT-DL to produce a webbased monitor and analysis tool
 - Without it, it just won't work!
 - Will include a chat window for questions

Proposed Web-based Spectrum Monitor

Es'hailSat Spectrum Monitor

Users currently monitoring the spectrum: 1

Reception


- © Downlink power levels should enable use of fixed 80cm dish in most areas ©
- © Downlink frequency is 10,491 10,499 MHz and within pass band of standard consumer LNB ©
- PLL LNBs must be used to give stability for RB-TV below 1 Msymbol/sec
 - © Octagon PLL LNB = £25 on ebay
- Showever 9,750 MHz LO puts IF outside consumer set top box tuning ☺
 - Standard STB range = 950 − 2,150 MHz
 - **№** 10,491 MHz 9,750 MHz = 741 MHz

Receiver - 3 Possible Solutions

- Move the local oscillator by using a modified LNB with 9GHz LO
 - Used to be available from Germany?
 - Will work but not suitable for RB-TV due to stability of "pulled" DRO oscillator
- BATC USB Minitiouner card with Sharp or Serit tuner covers 741 MHz
 - Gives totally flexible receive system
 - HD-TV, DATV and RB-TV
- Up-convert: SUP-2400, GOMRF Converter, AMSAT-DL Converter?

AMSAT-DL Up-Converter

Design by Achim, DH2VA. May be available ready-built for €130 - €150 if sufficient demand

Uplink issues

- Uplink band is 2,401.5 2,409.5 MHz = Secondary allocation = WiFi Channel 1(2412)
- Uplink must not cause interference to other users, both in-band and on adjacent bands
- Spectral re-growth adjacent channel interference will be a real issue

TX Option 1: Up-convert

- Generate DATV signal at lower frequency and up convert - possibly from 437 MHz?
 - Use standard encoder/modulator
 - DTX1, DigiLite, DATV-Express or Portsdown
- Up-converter options:
 - Use narrow-band 13cms up-converter
 - 80 MHz away from 13cms terrestrial NB section
 - Kuhne KU UP 2325 A up-converter?
 - Eur500

BATTX Option 2: Generate at 2400

- DATV Express
 - Very flexible but requires PC etc

- Portsdown
- Modified DTX1
 - Standalone system

All solutions are low power (0 – 10 dBm) and will require extensive amplification and filtering

Uplink Power Budget

Starting point is that an 8 MHz of DVB-S2 transmission will require 100W into a 2.4m

dish Power Budget (Watts)										
	8 MHz	4 MHz	2 MHz	1 MHz	0.5MHz					
2.4m	100	50	25	12.5	6.25					
1.7m	200	100	50	25	12.5					
1.2m	400	200	100	50	25					
0.85m	800	400	200	100	50					

Conclusions

- Es'Hail-2 is a fantastic opportunity for amateur experimentation
- It will need flexible ground station solutions
- A good transmit capability will be a challenge!
- Amateur service coordination is essential if we are to maximise the benefit
- Start simple
 - Get a receiver working!
- Launch in 2018?

